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Abstract
A scaling invariance in the Lorenz model allows one to consider the usually
discarded case σ = 0. We integrate it with the third Painlevé function.

PACS numbers: 02.30.−f, 05.45.+b, 47.27.−i

1. Introduction

The Lorenz model [1]

dx

dt
= σ(y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz (1)

in which (b, σ, r) are real constants, is a prototype of chaotic behaviour [3]. In particular, it
fails the Painlevé test unless the parameters obey the constraints [4]

Q2 ≡ (b − 2σ)(b + 3σ − 1) = 0 (2)

∀x2 : Q4 ≡ −4i(b − σ − 1)(b − 6σ + 2)x2 − 4
3 (b − 3σ + 5)bσr

+ (−4 + 10b + 30b2 − 20b3 − 16b4)/27

+
(−38b − 56b2 − 28

3 b3 + 88σ + 86b2σ
)
σ/3

− 32σ/9 + 70bσ 2 − 64σ 3 − 58bσ 3 + 36σ 4 = 0. (3)

This system (2)–(3) depends on r only through the product bσr , as a consequence of an
obvious scaling invariance in the model, and it admits four solutions,

(b, σ, bσr) = (1, 1/2, 0), (2, 1, 2/9), (1, 1/3, 0), (1, 0, 0). (4)

In the first three cases, i.e. when the system (1) is nonlinear, which excludes σ = 0, the system
can be explicitly integrated [4], and the general solution (x, y, z) is a single-valued function
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of time expressed with, respectively, an elliptic function, the second and the third Painlevé
functions.

In this letter, we consider the fourth case

(b, σ, r) = (1, 0, r). (5)

The apparently linear nature of the dynamical system can be removed by eliminating y and z

and considering the third-order differential equation for x(t) [5],

y = x + x ′/σ z = r − 1 − [(σ + 1)x ′ + x ′′]/(σx) (6)

xx ′′′ − x ′x ′′ + x3x ′ + σx4 + (b + σ + 1)xx ′′ + (σ + 1)(bxx ′ − x ′2) + b(1 − r)σx2 = 0 (7)

which also depends on r only through the product bσr , and thus implements the above-
mentioned scaling invariance. The necessary conditions for (7) to pass the Painlevé test are
the same (Q2 = 0,Q4 = 0) as for the dynamical system (1), the restriction σ �= 0 being now
removed.

2. Integration for b = 1, σ = 0

Because of the scaling invariance, the following first integral [4] of the dynamical system (1),

(b, σ, r) = (1, σ, 0): K3 = (y2 + z2) e2t (8)

is also a first integral of the third-order equation for (b, σ, bσr) = (1, σ, 0), which includes
the particular case of interest to us (b, σ, bσr) = (1, 0, 0),

(b, σ, bσr) = (1, 0, 0): K2 = lim
σ→0

σ 2K3 =
[(

x ′′ + x ′

x

)2

+ x ′2
]

e2t . (9)

For K = 0, the general solution is

x = ik tanh
k

2
(t − t0) − i i2 = −1 (k, t0) arbitrary. (10)

For K �= 0, after taking the usual parametric representation

x ′′ + x ′

x
= K e−t cos λ x ′ = K e−t sin λ (11)

the second-order ODE for λ(t) is found to be

λ′′ − K e−t sin λ = 0 (12)

with the link

x(t) = λ′(t). (13)

In the variable eiλ, the differential equation (12) becomes algebraic and belongs to an already
integrated class [2]. The overall result is the general solution

x = i + 2i
d

dt
log w(ξ(t)) i2 = −1 ξ = a e−t (14)

in which w(ξ) is the particular third Painlevé function defined by

d2w

dξ 2
= 1

w

(
dw

dξ

)2

− dw

ξ dξ
+

αw2 + γw3

4ξ 2
+

β

4ξ
+

δ

4w
(15)

α = 0 β = 0 γ δ = −(K/a)2. (16)
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3. Conclusion

Out of the two cases selected by the condition Q2 = 0, one admits a first integral [4],

b = 2σ : K1 = (x2 − 2σz) e2σ t (17)

but, in the second case b = 1 − 3σ , the first integral whose existence has been conjectured [6]
is not yet known. The present result, which belongs to this unsettled case b = 1 − 3σ , should
help to solve this open question.
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